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Abstract. A possible first step in determining the flow about a steadily advancing ship is to consider the ship
plus its mirror image in the undisturbed free surface. If the ship has a bulbous bow, the question may be asked
whether a stagnation point can be expected not only at the intersection of the stem and the undisturbed surface, but
also at some point on the stem near the bulb. In analogous two-dimensional situations the latter could not happen.
That it can happen in three dimensions is shown here by the example of two dipoles situated perpendicularly to
an oncoming flow. Both two- and three dimensional versions are considered. The conditions under which these
stagnation points can occur in three dimensions are determined and the reason why this does not happen in two
dimensions is explained.
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1. Introduction

A rectilinear potential flow about a circle in the plane or about a sphere in three dimensions
results in two stagnation points, one at each end of a diameter. For any bounded simply
connected region in the plane it follows from Riemann’s Mapping Theorem that there is an
analytic function mapping the exterior of the unit circle into the exterior of the region and
behaving like a rectilinear flow at infinity. Hence there are only two stagnation points on the
boundary of the region in question. Although harmonic functions in three dimensions share
many properties with analytic functions in the plane, there is no analogue of the Riemann
theorem. In fact, there is only a very restricted set of transformations that preserve the property
of being harmonic (see,e.g., Kellogg [1, pp. 235–236]). It is natural to ask whether there can be
more than two stagnation points in a potential flow about a bounded simply connected body in
three dimensions. The question is raised in Kellogg [1, pp. 273–277] but not really answered.
It is shown in Kellogg [1, p. 273] that there cannot be a continuous surface distribution of
stagnation points (unless, of course, the potential function is constant). On the other hand,
one knows that there can be continuous linear distributions of stagnation points if Laplace’s
equation can be separated in a particular coordinate system, as in8(x, y, z) = ϕ(x, y)Z(z)
with Z(z) = const. or 8(r, θ, z) = ϕ(r, z)2(θ) with 2 = const. One might be led to
conjecture that any continuous line of stagnation points must be associated with a coordinate
system in which Laplace’s equation may be separated. The following potential function is
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120 K. J. Bai et al.

a partial counterexample (JWK), for both thex-axis and they-axis are lines of stagnation
points:

8(x, y, z) = 1
2x

2y2− 1
2(x

2 + y2)z2+ 1
6z

4.

However, adding a uniform steady flow, saycx, does not lead to the flow about a body with a
continuous curve of stagnation points.

As it is stated above, the problem of the existence of multiple isolated stagnation points ap-
pears to be one of only theoretical interest. Nevertheless, it turns out to be of some importance
in the calculation of the wave resistance of ships. Proposals by Eiichi Baba [2], Charles Daw-
son [3], G. E. Gadd [4], and others for an improvement of Michell’s [5] classical ‘thin-ship’
approximation all begin with the steady flow about the ship with the free-surface boundary
condition replaced by that for a rigid flat surface. After reflection in this rigid boundary, one
has the flow about a single body, the ship hull and its mirror image. If one is dealing with a
ship with a bulbous bow, one asks oneself the question whether there can be a stagnation point
on the bulb, and its reflection, as well as at the intersection of the rigid boundary and the stem,
for the flow near the stem will be radically changed if a stagnation point does occur near the
bulb. This question was the motivation for the investigation of the present paper.

A discussion by one of us (JVW) with Dawson in June 1978 concerning the possibilities
of multiple stagnation points resulted in a letter from him dated 28 June 1978 describing his
investigation of a three-dimensional body generated by two dipoles of equal moment situated
on a line perpendicular to an oncoming steady rectilinear flow. As is well known, when the
separation of the dipoles is zero, one streamline will generate a sphere with stagnation points
at opposite ends of a diameter. Dawson correctly predicts the dipole separation at which each
of the two stagnation points will begin to separate into three stagnation points, and also the
(further) separation at which the single body will divide into two bodies. In addition, he
computed the positions of the stagnation points lying on the central streamline as long as
there is only one body.

Dawson died in January 1980 without having published any details concerning his calcula-
tions. In the present paper we shall present not only the analysis and computation necessary to
substantiate Dawson’s results, but also other relevant details accessible by exploiting modern
computational capabilities such asMathematica, which will be used below. In addition to the
three-dimensional problem, we shall also treat the analogous two-dimensional problems for
two dipoles and for two vortices. The analysis and the computation for these are simpler than
for three dimensions, in particular, because of the presence of a stream function, but the results
are relevant both for their similarities to and their differences from the three-dimensional case.
These will be discussed at the end of the paper. We shall start with the two-dimensional results,
first the vortices, then the dipoles, and finally we shall treat the three-dimensional case.

2. The velocity potentials

We shall first formulate the problem in three dimensions and then state the two-dimensional
problems. The actual analysis will be developed in reverse order.

We suppose that there are two dipoles of momentµ and directionOX, one placed at
(0, a,0) and the other at(0,−a,0), in a steady flow with velocityc in the directionOX. The
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Stagnation points in flows about solid bodies121

velocity potential for the flow may then be written as follows:

8(x, y, z) = x
[
c + µ

r3
1

+ µ

r3
2

]
,

r2
1 = x2+ (y − a)2+ z2, r2

2 = x2 + (y + a)2+ z2. (1)

The problem will be made dimensionless as follows:

(x, y, z) =
(µ
c

) 1
3
(x, y, z), a =

(µ
c

) 1
3
a, 8 =

(µ
c2

)
8. (2)

Then, after dropping the underlining, we have the following equation for8

8(x, y, z) = x
[
1+ 1

r3
1

+ 1

r3
2

]
,

r2
1 = x2+ (y − a)2+ z2, r2

2 = x2 + (y + a)2+ z2. (3)

There are other ways to make the equations dimensionless, but the present way has the virtue
that the separation of dipoles is displayed, and this seems easier to intuit physically than, for
example, having the dipoles at(0,±1,0) with a variable dimensionless momentµ.

The analogous flow in the plane for a pair of similarly disposed dipoles can be formulated
as an analytic function:

f (z) = cz+ µ

z− ia +
µ

z+ ia = φ(x, y) + iψ(x, y). (4)

Letting

z =
(µ
c

) 1
2
z, a =

(µ
c

) 1
2
a, f = (µc) 1

2f (5)

and again dropping the underlining for the dimensionless variables, we find

f (z) = z+ 1

z− ia +
1

z+ ia = φ(x, y) + iψ(x, y). (6)

We shall also consider the flow in the plane about two vortices of strength±κ at z = ±ia
in a flow of velocityc in directionOX:

f (z) = cz+ iκ log
z− ia
z+ ia = φ + iψ. (7)

In this case we let

z =
(κ
c

)
z, a =

(κ
c

)
a, f = κf , (8)

resulting in

f (z) = z+ i log
z− ia
z+ ia = φ + iψ. (9)
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It is clear from the formulation of the problems that the streamlines will be symmetric with
respect to both the(x, y) and the(y, z) planes for the three-dimensional problem. For the most
part we shall restrict ourselves to showing traces of stream surfaces in the first quadrant of the
(x, y) plane. For the two-dimensional problems the streamlines are symmetric with respect
to thex andy axes, and we shall again restrict ourselves to showing results in only the first
quadrant.

We shall ignore the behavior of the streamlines or surfaces emanating from the dipoles.
These always lie within the closed streamline or surface that is the subject of this investigation.
Similarly, the streamlines surrounding each of the two vortices and lying within the single
large closed streamline will be ignored. It will be often convenient to refer to the single closed
streamline or surface as the ‘body’, as though the interior of the closed streamline or surface
had been replaced by solid material. In our figures we have shown only those streamlines
exterior to the body that end in a stagnation point on the body.

3. Vortex pairs

The flow about a vortex pair has been treated by Milne–Thomson [6, pp. 344–345], but a
figure is shown only for the casea = 1

2. Since one of the aims of the present work is to
examine the effect of separation upon the form of the generated body, and since the two-vortex
flow is somewhat different from the two-dipole flow, we are including this case, following
Milne–Thomson’s analysis.

From Equation (9) follows

f (z) = φ + iψ = x + iy + i log
r1 exp(iθ1)

r2 exp(iθ2)
= x − (θ1− θ2)+ i

(
y + log

r1

r2

)
, (10)

wherez− ia = r1 expiθ1 andz+ ia = r2 expiθ2. Thus

ψ(x, y) = y + log
r1

r2
= y + 1

2 log
x2 + (y − a)2
x2 + (y + a)2 . (11)

A streamlineψ = ψ0 will then be represented by the equation

x2 = (y + a)2 exp 2(ψ0− y)− (y − a)2
1− exp 2(ψ0− y) . (12)

The complex velocity is given by

f ′(z) = u− iv = 1+ i

z− ia −
i

z+ ia =
z2+ a2 − 2a

z2+ a2
, (13)

so that a stagnation point is given by

z0 = ±
√
a(2− a). (14)

We shall consider only the positive root since we are examining only the first quadrant. Evi-
dentlyz0 is real only if 0< a < 2 and= 0 if a = 0 or 2. It follows from (11) thaty = 0 is a
streamline and that this streamline will join with the ones determined by (12) withψ0 = 0 and
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Stagnation points in flows about solid bodies123

0 < a < 2. Figure 1 shows the first quadrant of several typical shapes for closed streamlines
determined by (12) witha = 0·25, 0·50, 1·00, 1·50, 1·90, and 2·00. If a > 2, the stagnation
points determined by (14) no longer lie on the real axis but instead on the imaginary axis:

z0 = ±i
√
a(a − 2). (15)

We can obtain the associated value ofψ0 by substitutingx0 = 0 andy0 = √a(a − 2) in (11).
In Figure 1 two bodies have resulted when the two vortices are at a distance 2a= 4·4 apart.
For this value ofa, x0 = 0, y0 = 0·66, andψ0 = 0·04096.

Further derivatives off (z) lead to

f ′′(z) = 4az

z2+ a2
= φxx + iψxx,

f ′′′(z) = 4a(a2 − 3z2)

(z2+ a2)3
= φxxx + iψxxx = −φxyy + iψxxx. (16)

and

f ′′(z0) =
√

2− a
a
= φxx(x0,0)+ iψxx(x0,0), f

′′′(z0) = 2a − 3

a
= −φxyyy(x0,0). (17)

φxx(x0,0) = 0 for a = 2, the boundary between the generation of one and two bodies.
φxyy(x0,0) = 0 for a = 3

2, which marks the boundary between strictly convex bodies
and bodies with a concave region near the stagnation point for3

2 < a < 2. These same
boundary markers will appear later for the flow about both the two-dimensional and the
three-dimensional dipoles.
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Figure 1.Two vortices. Figure 2.Two dipoles in the plane.
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4. Dipole pairs in the plane

First we shall determine the positions of the stagnation points from

f ′(z) = 1− 1

(z− ia)2 −
1

(z+ ia)2 =
z4+ 2(a2 − 1)z2+ a4+ 2a2

(z2+ a2)2
. (18)

Settingf ′(z) = 0, we find

z2
0 = 1− a2 ±

√
1− 4a2,

which is real and positive ifa 6 1
2. The dipole separationa = 1

2 evidently represents the
upper bound of values ofa for which a simple closed streamline is formed by the flow.

If f (z) is separated into real and imaginary parts,φ + iψ , we find

ψ(x, y) = y

[
1+ 2(a2 − x2 − y2)

(x2 + y2)2+ a2(2x2 − 2y2 + a2)

]

= y

[
(x2 + y2 − a2− 1)2 + 4a2x2 − 1

(x2 + y2 + a2)2− 4a2y2

]

= r sin θ

[
r4+ 2r2(a2 cos 2θ − 1)+ 4a2+ 2a2

r4+ 2a2r2 cos 2θ + a2

]
(19)

where, as usual,x = r cosθ andy = r sin θ . As expected,y = 0 is a streamline forψ = 0,
and after some manipulation with the expression in [ ], we find that a further streamline is
determined forψ = 0 by

x2 = 1− a2− y2 +
√

1+ 4a2(y2 − 1), (20)

or in polar coordinates by

r2 = 1− a2 cos 2θ ±
√
(1− a2 cos 2θ)2 − a2(a2+ 2). (21)

As in the case of the vortex pairs, we shall not consider the streamline associated with the−
sign, which lies wholly within the closed one determined by the+ sign fora 6 1

2.
Figure 2 shows the part in the first quadrant of the streamline determined by (20) or (21)

for a = 0,0·25,0·45509= [(21/2−1)/2]1/2,0·49219= 63/128, and 0·50. As for the case of
the vortex pairs, we compute

f ′′(z) = 4z(z2− 3a2)

(z2+ a2)3
andf ′′′(z) = −12(z4− 6a2z2+ a4)

(z2+ a2)4
,

f ′′(z0) = 4z0(1− 4a2 +√1− 4a2)

(z2
0+ a2)3

= φxx + iψxx, (22)

f ′′′(z0) = −24[1− 6a2 + 4a4 + (1− 4a2)
3
2 ]

(z2
0+ a2)4

= −φxyy + iψxxx.
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Evidentlyf ′′(z0) = 0 for a = 1
2, i.e.φxx = 0 at the value ofa separating one from two bodies.

Substitution ofa = [(21/2−1)/2]1/2 yieldsφxyy = 0, although this is not so obvious. As with
the vortex pairs,φxyy = 0 marks the boundary between strictly convex bodies and ones with
a concave region near the stagnation point.

Note especially, in comparing Figure 2 and Figure 1, the difference between the bodies
with the values ofa approaching the largest allowable value before two bodies are formed.
For the vortex-pair bodies the neck steadily diminishes until it finally vanishes ata = 2,
whereas the ‘last’ dipole-pair body still has a substantial neck joining the two halves. Also, in
both cases the streamlines intersect thex-axis normally fora <the critical value, whereasat
the critical value the streamline makes an angle of 60◦ with thex-axis. Note also that not only
does the valuea = 0 give a circle of radius 21/2, but the body at the limiting value,a = 1

2,
consists of two circles with centers at (0,±1

2) and radii 1.
We still haven’t considered how we shall deal with separationsa > 1

2. Now z2
0 becomes

complex with both real and imaginary parts. By substituting(x0, y0) for (x, y) in the expan-
sion forψ(x, y) in (19), we may determine the value ofψ(x0, y0) = ψ0 that is associated with
the stagnation point. Unfortunately, the solution of the resulting equation for the streamline
is no longer simple. As inspection of (19) will show, it is still possible to formulate it as
a quadratic equation inx2, but with very complicated expressions iny, a, andψ0 for the
coefficient ofx2 and for the constant term, but still polynomial forms. The polar equation can
be manipulated into the following cubic equation inY = r sin θ :

4r2Y 3− 4ψ0Y
2− (r4+ 3)Y + ψ0(r

2+ 1)2 = 0 (23)

in which one then assigns values tor and solves forY . The same equation can also provide a
fifth-degree polynomial inr to be solved (numerically) for assigned values ofθ .

Figure 2 shows the first-quadrant part of the closed streamline (one of two) formed when
the dipole separation is determined bya = 1. In this casez0 = (3/4)1/4(1+ i). The associated
value ofψ0 is (3/4)1/4(3 − 31/2)/2 = 0·58998. The dramatic difference in the shapes of
the ‘last’ single bodies for the two-vortex and the two-dipole bodies is repeated here for the
separated bodies.

5. Dipole pairs in three dimensions

The analysis of the irrotational motion about two dipoles is noticeably more difficult than
for the analogous problem in the plane. This is certainly a result of the absence of a stream
function, which allowed one to derive immediately an equation describing the streamlines.
Nevertheless, some conclusions can be drawn before it becomes necessary to have recourse to
sophisticated computing methods.

We begin with Equation (3) and compute some derivatives:

8x = 1+ 1

r3
1

+ 1

r3
2

− 3x2

(
1

r5
1

+ 1

r5
2

)
,

8y = −3x
(
y − a
r5
1

+ y + a
r5
2

)
, 8z = −3xz

(
1

r5
1

+ 1

r5
2

)
,

8xx = −9x

(
1

r5
1

+ 1

r5
2

)
+ 15x3

(
1

r7
1

+ 1

r7
2

)
, (24)
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8yy = −3x

(
1

r5
1

+ 1

r5
2

)
+ 15x

(
(y − a)2
r7
1

+ (y + a)
2

r7
2

)
,

8zz = −3x

(
1

r5
1

+ 1

r5
2

)
+ 15xz2

(
1

r7
1

+ 1

r7
2

)
,

8xyy = −3
(

1

r5
1

+ 1

r5
2

)
+ 15x2

(
1

r7
1

+ 1

r7
2

)
+ 15

[
(y − a)2
r7
1

+ (y + a)
2

r7
2

]

−105x2
[
(y − a)2
r9
1

+ (y + a)
2

r9
2

]
.

The definition of a stagnation point requires8x(x0, y0, z0) = 8y = 8z = 0, which in turn
requiresz0 = 0 if x0 6= 0. Hence, from now on we may drop thez2 in the definitions ofr1
andr2 and examine the behavior of stagnation points only in the (x, y)-plane. We note also
that8y = 0 if y = 0. Moreover, ifa = 0, then8y = 0 andx 6= 0 require thaty = 0.
Since, in addition,∂8y/∂a = 0 for a = 0, it follows, at least for sufficiently smalla, that
8y = 0 implies thaty = 0. Hence, for sufficiently small values ofa we shall assume that
at a stagnation point bothy = 0 and z = 0 hold and concentrate on the implications of
8x(x,0,0) = 0, which we now examine:

8x(x,0,0) = 1+ 2

(x2 + a2)3/2
− 6x2

(x2 + a2)5/2
= 1+ 2(a2 − 2x2)

(x2 − a2)5/2
. (25)

Then8x(x0,0,0) = 0 yields

(x2
0 + a2)5/2 = 2(2x2

0 − a2), (26)

and withξ = x2
0/a

2,

a3 = 2(2ξ − 1)

(ξ + 1)5/2
. (27)

The following equations will be useful:

8xx(x,0,0) = 6x(2x2 − 3a2)

(x2+ a2)7/2
,

8xx(x0,0,0) = 3x0(2x2
0 − 3a2)

(2x2
0 − a2)(x2

0 + a2)
= 3ξ1/2(2ξ − 3)

(2ξ − 1)(ξ + 1)a
,

8yy(x,0,0) = 6x(4a2 − x2)

(x2 + a2)7/2
,

8yy(x0,0,0) = 3x0(4a2 − x2
0)

(2x2
0 − a2)(x2

0 + a2)
= 3ξ1/2(4− ξ)
(2ξ − 1)(ξ + 1)a

,
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φzz(x0,0,0) = −3x0

(2x2
0 − a2)

< 0 forx0 > 0, (28)

8xyy(x0,0,0) = 3(4x4
0 − 27a2x2

0 + 4a2)

(2x2
0 − a2)(x2

0 + a2)2
= 3(4ξ2− 27ξ+ 4)

(2ξ − 1)(ξ + 1)2a2
,

8xy(x,0,0) = 8xyy(x,0,0) = 8yyy(x,0,0) = 0.

Figure 3 shows the relation betweena andx0, the position of the stagnation point associated
with a. Following our usual procedure of disregarding the streamlines and their stagnation
points that lie inside the ‘body’, we shall consider only that part of the curve to the right of the
maximum, which occurs ata = [4(2/5)5/2]1/3 = 0·73972,x0 = 0·90597, corresponding to
ξ = 3/2. This is also the value ofa for which8xx(x0,0,0) = 0 and is the largest value ofa
before the single closed streamline divides into two closed streamlines.a = 0 corresponds to
x0 = 41/3 = 1·58740, the radius of the sphere generated by a single dipole.8xx(x0,0,0) > 0
in this interval.8yy(x0,0,0) = 0 for a = 0·63033 and is< 0 for smaller values ofa.
8xxx(x0,0,0) = 0 for a = 0·68528 and is< 0 for smaller values.8xyy(x0,0,0) > 0 for
a < 0·53517, where it= 0. The usefulness of these values will presently become evident.

0.0 0.5 1.0 1.5
0.0

0.5

1.0

Φxx0  = 0: x0 = 0.90597, a = 0.73972

Φxyy0  =
>

<
 0: x0 =

>

<
1.37488, a =

<

>
 0.53517

Φyy0 =
<

>
 0: x0 =

>

<
1.26066, a =

<

>
 0.63033

Φxx0 =
>

<
 Φyy0 : x0 =

>

<
 1.08815, a =

<

>
 0.71236

a

x0

Figure 3. Relation betweena andx0 in three dimensions.

In the two cases of planar motion, determination of the streamlines, and, in particular, of
the closed streamlines, was relatively straightforward. One had only to assign an appropriate
value to the stream function (in fact, 0 for a single closed streamline) and then solve a fairly
uncomplicated equation for the streamline. Also, one knew that there were only two stagnation
points. In the present case, even though we are restricting ourselves for the moment to the
(x, y)-plane, there is no stream function and we are not sure that there are only two stagnation
points except whena is sufficiently small.

What is now necessary is to solve a set of three differential equations to determine a
streamline,r(t) = (x(t), y(t), z(t)), through a given point(x1, y1, z1):

dr
dt
= ∇8, r(t1) = r1, (29a)
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or

dr
ds
= ∇8|∇8| , r(s1) = r1. (29b)

The situation of most interest to us is, of course, when the initial condition is the stagnation
point r0 = (x0,0,0).

Before proceeding further, we call attention to an interesting property of the stream sur-
face passing through the stagnation point at(x0,0,0). If we write Equation (3) in cylindrical
coordinates about they-axis, withx = r cosθ andz = r sin θ , we find

8(r, θ, y) = cosθϕ(r, y), (30a)

where

ϕ = r
[
1+ 1

{r2+ (y − a)2}3/2 +
1

{r2 + (y + a)2}3/2
]
. (30b)

The stagnation point(x0,0,0) is now identified by(r0,0,0) with r0 = x0. Equations (29a)
then become

r ′(t) = cosθϕr(r, y), θ
′(t) = sin θϕ(r, y)/r2, y′(t) = cosθϕy(r, y). (30c)

From the first and third equations follows

dr

dy
= ϕr(r, y)

ϕy(r, y)
, r(0) = r0, (30d)

which indicates that the stream surface is symmetric about they-axis. In order to find the
streamlines themselves, we must solve the second and third equations of (30c) withr =
r(y(t)), r(y) having already been determined by (30d). We are evidently losing no informa-
tion by restricting our attention to the(x, y)-plane.

We shall start by examining the behavior of the streamlines near the stagnation point
(x0,0,0) for a given value ofa. If we expand8(x, y,0) in a power series about(x0,0,0),
discarding terms that we know to be 0, we find for the first few terms the following:

8(x, y,0) −8(x0,0,0) = 1
28xx0(x − x0)

2+ 1
28yy0y

2+ (31)

1
68xxx0(x − x0)

3+ 1
28xyy0(x − x0)y

2 + . . . ,
where we have written8xx0 for 8xx(x0,0,0), etc. We may replace Equations (29) by the
simpler single equation

8x(x, y,0)dy −8y(x, y,0)dx = 0, (32)

which is a direct expression of the orthogonality of the streamlines and the equipotential lines
in the(x, y)-plane.

The values ofa given above for the vanishing of8xx0, 8yy0, and8xyy0 already indicate
that three-dimensional behavior is going to be different from that in two dimensions. In two
dimensions8xx and8yy vanish together. The fact that in three dimensions8yy < 0 for small
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a and8xx > 0 indicates that the equipotential curves in this region will be hyperbolas in
the lowest approximation, whereas in the interval where8yy > 0 they will be ellipses. From
Equation (31) the expansions for8x and8y in the neighborhood of(x0,0,0) begin as follows:

8x(x, y,0) = 8xx0(x − x0)+ 1
28xxx0(x − x0)

2+ 1
2φxyy0y

2 + . . . , (33)

8y(x, y,0) = 8yy0y +8xyy0(x − x0)y + . . . .
In the very lowest order (32) becomes

8xx0(x − x0)dy −8yy0y dx = 0, (34)

with the obvious solution

x − x0 = Cyp, where p = 8xx0/8yy0. (35)

It is evident that in the neighborhood of(x0,0,0) the behavior of (35) changes radically
depending upon the value of8yy0. In particular, the significant regions, or values, are

8yy0 < 0,8yy0 = 0,0< 8yy0 < 8xx0,8yy0 = 8xx0,8yy0 > 8xx0,8xx0 = 0.

The values8yy0 = 0 and8xx0 = 0 do not yield much useful information at this level of
approximation, but serve as boundaries. In the region8yy0 < 0 the solution withx = x0, y =
0 as initial value is they-axis. However, a streamline through a nearby point, say(x0 + ε, η)
will have approximately the following shape:

In the region8yy0 > 0 the behavior of streamlines in the first quadrant in the immediate
neighborhood of(x0,0) will be as shown below:

More detailed local information is obtained by retaining the quadratic terms in (33). Except
for the separation associated with8xyy0 = 0, the resulting differential equations do not allow
a solution in closed form (as far as we could determine). To provide this information we fell
back upon numerical solutions provided byMathematica. Figure 4 shows the local behavior
for several values ofa that illustrate the regions mentioned above, plus one significant value
not determined by the linear terms.
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Figure 4. Behavior of streamlines nearx0 for various ofa. (a): a = 0·25, 8xyy0 > 0, (b): a = 0·53517,
8xyy0 = 0, (c):a = 0·63063,8yy0 > 0, (d):a = 0·71236,8xx0 > 0 = 8yy0, (e):a = 0·732,8xx0 < 8yy0,
(f): a = 0·739,8xx0 = 0.

As in the two-dimensional cases, the value ofa associated with8xyy0 = 0, namely,a =
0·53517, separates the interval 06 a 6 0·53517 where the closed streamline is strictly convex
from the interval 0·53517< a < 0·71236 where the closed streamline is concave near the
stagnation point (a = 0·71236 is the value ofa at which8xx0 = 8yy0). In order to confirm
this, consider the differential equation (32) with the approximations for8x and8y shown
in (33). If we setx = x0, the slopes along the linex = x0 are given bydx

dy = ( 8xyy0

28yy0
)y, and

evidently, if8xyy0 = 0,x = x0 is a solution of the differential equation (32, 33) with a singular
point at (x0,0). Thus, in the immediate neighborhood of(x0,0), where the approximation
(33) holds, the streamline has no curvature. However, this does not indicate the curvature for
separationsa on either side ofa = 0·53517 where8xyyo = 0. For this we return to the
differential equation (32, 33):

dx

dy
= 1

8yy0y
[8xx0(x − x0)+ 1

28xxx0(x − x0)
2+ 1

28xyy0y
2]
[
1+ 8xyy0

8yy0
x

]−1

= 8xx0

8yy0

x

y
+ 8xyy0

28yy0
y − 82

xyy0

282
yy0

xy +O(x2). (36)

Substitution ofx = u(y)yp, p = 8xx0
8yy0

and neglect of terms ofO(x) ultimately yields the
solution

x = 1

2

8xyy0

28yy0−8xx0
y2 + Cyp, if 28yy0−8xx0 6= 0. (37)

For8yyo < 0(a < 0·63033), the conditionx(0) = 0 implies thatC = 0 and hence that
x′′(0) = 8xyyo/(28yyo − 8xxo). For the interval where8xyyo > 0(a < 0·53517)evidently
x′′ < 0, and where it is> 0, x′′ > 0. When8yyo > 0(a > 0·63033), the conditionx(0) = 0
leavesC undetermined, and it must be determined by the position of the neighboring stagna-
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tion point, which we know exists since8yyo > 0 (see (38) below). From the geometry of the
stream surface it is plausible to assume thatC > 0. Nowx′′ is given by the equation

x′′ = 8xyy0

28yy0−8xx0
+ C8xx0

8yy0

8xx0−8yy0

8yy0
yp−2.

Evidentlyx′′ > 0 as long as8xxo > 28yyo(a < 0·69139). Because of the predominance of
the second term inx′′ neary = 0, x′′ remains> 0 in the interval between8xxo = 28yyo(a =
0·69139)and8xxo = 8yyo(a = 0·71236). Fora > 0·71236,x′′ < 0 for y > 0. These
predictions are all borne out by the numerical solutions shown in Figure 5.

The valuea = 0·63033 associated with8yy0 = 0 marks another important transition.
For a > 0·63033 there is an additional stagnation point in the first quadrant of the(x, y)-
plane, one withy > 0. The valuea = 0·71236 marks the advent of a new phenomenon,
the appearance of a discontinuity in the slope, a corner that occurs not only in the trace in
the (x, y)-plane, but, of course, in all traces withθ = const. For values ofa > 0·71236
this corner becomes an inward-pointing cusp. Fora = 0·73972, when8xx0 = 0, this cusp
becomes exponentially sharp, not just the power-law cusp of Equation (35). As noted earlier,
for separationsa > 0·73972 two bodies are formed.

Figure 5 shows the full closed streamline in the first quadrant for the same typical values
of a as in Figure 4. These also were obtained by means of theMathematicaprogram, but for
the numerical solution of the complete differential equations. Figure 5 shows four cases where
the second stagnation point has appeared, together with the streamline issuing from it.

Dawson did not haveMathematicaavailable, so that it seems appropriate to ask whether
from (33) one could deduce the fact that there is only one stagnation point fora 6 0·63033,
where8yy0 = 0, but two or more such points fora > 0·63033. In fact, if we set8x = 8y = 0
in (33) and treat them as a pair of equations for determining the coordinates of a further
stagnation point (or points), we find

x = x0 − 8yy0

8xyy0
, y2 = 8yy0

82
xyy0

28xx0−8yy08xxx0

8xyy0
. (38)

If a < 0·63033, this yieldsy2 < 0 (even though8yy08xxx0 > 0 for smalla, it is still
overbalanced by 28xx0), and hence no real solution fory. Fora > 0·63033, however,y2 > 0,
and hence there exists a pair of nonzero real solutions. Note that fora > 0·63033,8yy > 0 and
8xyy < 0, so that the solution is somewhat to the right ofx0, as we expect. Whena = 0·63033,
the two solutions coalesce with the stagnation point at(x0,0).

Finally, Figures 6a,b,c show, again viaMathematica, three-dimensional illustrations of the
first-octant stream surface together with streamlines and equipotential lines lying on the sur-
face. Note that in Figures 6b and 6c the behavior in the neighborhood of the second stagnation
point is clearly displayed. Figure 6a shows the stream surface for the largest value ofa for
which there is a single stagnation point in the first octant.

6. Some final remarks

The qualitative difference between two and three dimensions that has been noted above is
chiefly a result of the following facts. In two dimensions8xx0 and8yy0 vanish together
at the two stagnation points associated with the largest separationa before a single closed
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Figure 5. Traces of streams surfaces in the first quadrant of(x, y)-plane for values ofa with only one stagnation
point (a 6 0·63033), and with two such points(0·63033< a 6 0·73972).

stream body splits into two bodies, with, of course, two stagnation points on each. In three
dimensions, however,8yy0 = 0 at a stagnation point associated with asmaller value ofa
than that at which8xx0 = 0, which again occurs at the largest value ofa before the single
closed stream body divides into two bodies. However, the existence of an interval ofa for
which 8yy0 > 0 has as a consequence the presence of two further stagnation points with
y 6= 0. Thus there exists an interval of dipole separations for which there is only one closed
stream body, but three stagnation points on each side. Furthermore, there exists an interval of
separations for which8yy0 > 8xx0 > 0, and this implies that the single body is not smooth
at the waist,i.e. at the intersection of the stream body with the plane perpendicular to and
bisecting the line joining the two dipoles. In two dimensions this nonsmooth behavior can
occur only at the ‘last’ single body when8xx0 = 8yy0 = 0, the only separation at which the
two are equal.
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a = 0.63
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Figure 6a.3-dimensional view of stream surface in
the first octant fora = 0·63033, the largest value
of a for which there is a single stagnation point
(8yy0 = 0). Note that there, and in Figure 6b and
6c, streamlines and equipotential lines are shown.

Figure 6b.3-dimensional view of stream surface in
the first octant fora = 0·71236 where8xx0 = 8yy0.
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Figure 6c.3-dimensional view of stream surface in the first octant fora = 0·73972 where8xx0 = 0, the largest
value ofa before two bodies are formed.

There remains a question of procedure. Since we could have produced the three-dimensional
figures of Figure 6 at the very beginning, one may ask if there has been any point in pre-
senting the more detailed analysis that has preceded it? The original question concerning
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the occurrence of multiple stagnation points on closed bodies could have been answered
immediately. The two cases of planar motion, although perhaps not uninteresting, in the light
of the preceding paragraph, could have been omitted as unnecessary if only the question of
multiple stagnation points is of interest. The analysis leading up to Figure 4 could also have
been omitted. Some numerical experimenting with the full equations used to produce Figure 5
would presumably have revealed the same changes in behavior asa increased, even if not
with the same precision. It is evident that having available a tool likeMathematicacan change
the strategy for approaching a problem where difficult computations are involved. Whether
it alone can produce sufficient and desired insight may be debated. Perhaps we should have
started with Figure 6.
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